Skip to main content

High Performance Numerical Computing in Java: Language and Compiler Issues

        Poor performance on numerical codes has slowed adoption of Java within the technical computing community. In this paper we describe a prototype array library and a research prototype compiler that support standard Java and deliver near-Fortran performance on numerically intensive codes. We discuss in detail our implementation of: (i) an efficient Java package for true multidimensional arrays; (ii) compiler techniques to generate efficient access to these arrays; and (iii) compiler optimizations that create safe, exception free regions of code that can be aggressively optimized. These techniques work together synergistically to make Java an efficient language for technical computing. In a set of four benchmarks, we achieve between 50 and 90% of the performance of highly optimized Fortran code. This represents a several-fold improvement compared to what can be achieved by the next best Java environment.

By: P. V. Artigas, M. Gupta, S. P. Midkiff, J. E. Moreira

Published in: RC21482 in 1999

LIMITED DISTRIBUTION NOTICE:

This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.

RC21482.ps

Questions about this service can be mailed to reports@us.ibm.com .