IBM Journal of Research and Development
IBM Skip to main content
  Home     Products & services     Support & downloads     My account  

  Select a country  
Journals Home  
  Systems Journal  
Journal of Research
and Development
    Current Issue  
    Recent Issues  
    Papers in Progress  
    Search/Index  
    Orders  
    Description  
    Patents  
    Recent publications  
    Author's Guide  
  Staff  
  Contact Us  
  Related links:  
     IBM Research  

IBM Journal of Research and Development  
Volume 21, Number 2, Page 176 (1977)
Polymers
  Full article: arrowPDF   arrowCopyright info





   

Solubility and Diffusion of Sulfur in Polymeric Materials

by B. S. Berry, J. R. Susko
Radiotracer techniques were used to study the sorption of sulfur vapor by silicone and epoxy polymers and to obtain information on the diffusion of sulfur in these materials. Sulfur was found to enter silicone polymers solely by a physical solution process which obeys Henry's law. The heat of solution is large (-0.43 eV) and at room temperature the solubility coefficient is at least five orders of magnitude greater than for many fully gaseous solutes, a result which fits an empirical rule relating the solubility coefficient of a given solute to its boiling point. Sorption of sulfur by a flexibilized anhydride-cured diglycidyletherbisphenol-A (DGEBA) epoxy is somewhat more complicated and appears to involve a double process of physical solution and chemical reaction. The rapid diffusion of sulfur in silicone rubber necessitated measurements of the diffusion coefficient D by a vacuum desorption technique. The activation energy Q and pre-exponential constant D0 are found to be 0.74 eV and 4×105cm2/s, respectively. Corresponding values for the epoxy, as determined by a steady state permeation method, are 1.06 eV and 3×105cm2/s. These relatively large activation energies and pre-exponential factors are thought to reflect the large size of the S8 molecule. Near room temperature, the difference in the activation energies causes sulfur diffusion to occur at least four orders of magnitude more slowly in the epoxy, which makes this material much more attractive for encapsulation applications requiring an effective diffusion barrier to elemental sulfur present as a pollutant of the atmosphere.
Related Subjects: Materials; Polymers