IBM Journal of Research and Development
IBM Skip to main content
  Home     Products & services     Support & downloads     My account  

  Select a country  
Journals Home  
  Systems Journal  
Journal of Research
and Development
    Current Issue  
    Recent Issues  
    Papers in Progress  
    Search/Index  
    Orders  
    Description  
    Patents  
    Recent publications  
    Author's Guide  
  Staff  
  Contact Us  
  Related links:  
     IBM Research  

IBM Journal of Research and Development  
Volume 31, Number 1, Page 96 (1987)
Office Automation Technologies
  Full article: arrowPDF   arrowCopyright info





   

Drop formation by DOD ink-jet nozzles: A comparison of experiment and numerical simulation

by T. W. Shield, D. B. Bogy, F. E. Talke
This paper presents a comparison of a numerical simulation of drop formation and ejection from a drop-on-demand (DOD) ink-jet nozzle with experimental observations from a particular nozzle-transducer design. In the numerical simulation, first the pressure waves in the transducer chamber are calculated using inviscid compressible flow theory to obtain the pressure history at the inner face of the nozzle plate. Then a viscous momentum integral computation is applied to the nozzle to obtain the velocity history at the outer face of the nozzle plate. Finally, the free surface shape is calculated using finite-difference methods on the one-dimensional equations for an inviscid incompressible free jet with surface tension that uses the nozzle exit velocity history as the driving boundary condition. The computations are compared with drop formation photographs obtained from a particular nozzle-transducer design. Encouraging agreement is obtained, but the numerical model will require added sophistication before detailed agreement can be expected.
Related Subjects: Fluids and fluid dynamics; Printing, ink jet; Simulation