


Optimal hardware and software arithmetic coding procedures for the QCoder 

by J. L. Mitchell, W. B. Pennebaker





The QCoder is an important new development in arithmetic coding. It combines a simple but efficient arithmetic approximation for the multiply operation, a new formalism which yields optimally efficient hardware and software implementations, and a new form of probability estimation. This paper describes the concepts which allow different, yet compatible, optimal software and hardware implementations. In prior binary arithmetic coding algorithms, efficient hardware implementations favored ordering the more probable symbol (MPS) above the less probable symbol (LPS) in the current probability interval. Efficient software implementation required the inverse ordering convention. In this paper it is shown that optimal hardware and software encoders and decoders can be achieved with either symbol ordering. Although optimal implementation for a given symbol ordering requires the hardware and software code strings to point to opposite ends of the probability interval, either code string can be converted to match the other exactly. In addition, a code string generated using one symbolordering convention can be inverted so that it exactly matches the code string generated with the inverse convention. Even where bit stuffing is used to block carry propagation, the code strings can be kept identical. 


Related Subjects: Coding theory; Coding, arithmetic; Image processing 


