IBM Journal of Research and Development
IBM Skip to main content
  Home     Products & services     Support & downloads     My account  

  Select a country  
Journals Home  
  Systems Journal  
Journal of Research
and Development
    Current Issue  
    Recent Issues  
    Papers in Progress  
    Search/Index  
    Orders  
    Description  
    Patents  
    Recent publications  
    Author's Guide  
  Staff  
  Contact Us  
  Related links:  
     IBM Research  

IBM Journal of Research and Development  
Volume 27, Number 3, Page 273 (1983)
Systems Architecture
  Full article: arrowPDF   arrowCopyright info





   

Bounce and Chaotic Motion in Impact Print Hammers

by F. Hendriks
The basis of this paper is a lumped-parameter description of an impact printer actuator of the stored-energy type. All constants necessary to describe the actuator and the ribbon/paper pack are derived from measurements. The equations of motion are integrated both for single- and multiple-current pulse excitation. The numerical results show that for low repetition rates, each impact is distinct and independent, but at higher rates the impacts interact. The interaction manifests itself initially as flight-time and print-force variations: Strict periodicity of the actuator motion is lost, as shown in Poincaré plots for the actuator motion, and randomness sets in. At extremely high repetition rates, the actuator "hangs up" and the backstop no longer participates in the actuator dynamics. During settle-out the actuator motion is extremely sensitive to the timing of the current excitation. This fact can, in principle, be exploited to achieve extremely fast cycle times. However, without knowledge of the state of the actuator, as is commonly the case, this sensitivity is detrimental to print quality.
Related Subjects: I/O devices, systems, and technology; Printing technology; Printing, impact