Boltzmann machines and energy-based models

We review Boltzmann machines and energy-based models. A Boltzmann machine defines a probability distribution over binary-valued patterns. One can learn parameters of a Boltzmann machine via gradient based approaches in a way that log likelihood of data is increased. The gradient and Laplacian of a Boltzmann machine admit beautiful mathematical representations, although computing them is in general intractable. This intractability motivates approximate methods, including Gibbs sampler and contrastive divergence, and tractable alternatives, namely energy-based models.

By: Takayuki Osogami

Published in: RT0979 in 2017


This Research Report is available. This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). I have read and understand this notice and am a member of the scientific community outside or inside of IBM seeking a single copy only.


Questions about this service can be mailed to .